Solve $|x\,-\,2| + |x\,-\,1| = x\,-\,3$
$[1, 2]$
$(1,2)$
$( - \infty ,1) \cup (2,\infty )$
None
Show that the function $f : R \rightarrow R$ given by $f ( x )= x ^{3}$ is injective.
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 .$ Then, the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ is equal to:
If function $f : R \to S, f(x) = (\sin x -\sqrt 3 \cos x+1)$ is onto, then $S$ is equal to
Let $x$ be a non-zero rational number and $y$ be an irrational number. Then $xy$ is
Let $f : R \rightarrow R$ be a function such that $f(x)=\frac{x^2+2 x+1}{x^2+1}$. Then